Let GB = "bad" classification rules ={g∈G:L(g)>ϵ}
P(L(gn^>ϵ))=P(gn^∈GB) takes g∈GB, if gn^=g,g(Xi)=Yi,i=1,2,⋯,n
P(g(X1)=Y1)P(g(X1)=Y1)P(g(Xi)=Yi)>ϵ≤1−ϵ=P(g(X1)=Y1)×P(g(X2)=Y2)×⋯×P(g(Xn)=Yn)=i=1∏nP(g(Xi)=Yi)≤(1−ϵ)n≤e−ϵn Reminder of Union Bound: P(A∪B)≤P(A)+P(B)
∴ if GB={g1,⋯,gk}, then
P(gn^∈GB)=P(gn^=g1,orgn^=g2,or⋯,orgn^=gk)≤P(gn^=g1)+P(gn^=g2)+⋯+P(gn^=gk)≤ke−ϵn≤∣G∣e−ϵn